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Abstract This paper presents a fuzzy modelling and wacking control methodology for complex systems by combining the
merits of fuzzy logic and conventional linear control theory. Here, fuzzy logic is used to formulate a system model by
aggregating a set of linearized local subsystems which identify the nonlinear system approximately, and a fuzzy feedback
controlier is designed to guaranice that the output tracking error of the controlled system with respect to a desired trajectory

converges Lo 2ero.

I. INTROBUCTION

In the design of modern and classical control systems, the
first step is to establish a suitable mathematical model to
describe the behaviour of the controlled plant. However, in
practical situzations, such a requirement is not feasible
because the controlled system have high nonlinearities and
uncertain  dynamics, and simple linear or nonlinear
differential equations cannot sufficiently represent the
corresponding  practical systems, and therefore, the
designed controlifer hased on such a model canaot
guarantee the good performance such as stability and
robustness. During the last few years, fuzzy logic control
has been suggested as an alternalive to conventional
control techniques for complex nonlinear systerns duc o
the fact (hat fuzzy logic combines human heuristic
reasoning and expert experience {o approximate a certain
desired behaviour function (Takagi et al., 1985).

This paper presents a fuzzy modelling and tracking control
methodology for complex systems by combining the
merits ol fuzzy logic and conventional linear control
theory. Here, fuzzy logic is used to formulate a system
mode] by aggregating a set of linearized local subsystems
which identify the nonlinear system approxirmately, and a
fuzzy feedback controller is designed to guarantee that the
output tracking error of the controlled system with respect
o a desired trajectory converges o Zero.

The organisation of the rest of the paper is as follows. In
Section 2. a brief review of fuzzy logic and fuzzy sysiems
is given. In Section 3, fuzzy modelling and tracking
controlier design for nonlinear systems is presented. In
Section 4. a simulation example using one-link rigid
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robotic manipulator is given in support of the proposed
control scheme. Section 5 gives concluding remarks.

2. BRIEF REVIEW ON FUZZY LOGIC AND
FUZZY SYSTEMS

Unlike Boolean logic in which the state (value) of any
variable/statement assumes either 0 or I, fuzzy logic
altows states (membership valuesy between them. The
grade of membership of a fuzzy variable can be regarded
as its capability of belonging to the described linguistic
term (Zadeh, 1973). For example, let x and y be fuzzy
variables and “good” the described linguistic term. Then,
we can tell how “good” x and v are by their grades of
membership. More precisely, we use the following
definitions:

Definition 1. A fuzzy set A of a universe of discourse U is
represented hy  a collection of ordered pairs of 2 generic
element xel/ and is grade of membership function

Balxr,le.,

N
A = ZHA(II‘)/X{'
i=|
= (g ) 2 (alag ) X , (alxy )/ xy)l
where N is the number of elements in /.

Note that the symbol Z here denotes coliection of discrete
clements. The corresponding notation for a continuous
universe of discourse U/ is

A= jUpA(x)/x



Definition 2: Fuzzy set A is said to be a fuzzy singleton if
it consists of only one element §4(x,)/ x, . In particuiar,
if the vaiue of W 4(x,} is I, then A becomes a nonfuzzy

singletonand A=1/x, .

Definition 3: The union of two fuzzy sets A and B in the
universe of discourse [/ is defined by

AlUB= jumax{nrq(x).ua(x‘))/x forxel

or
Hagpts) = max{pa (0Hg(s)]

Definition 4: The intersection of two fuzzy sets A and B in
the universe of discourse U/ is defined by

ANB z‘-{U min{p g (xhLpgl}/x forxe U

or

Ha(x)pp(x)}

Hangts) = min]

In this paper, we consider a fuzzy system whose basic
configuration is shown in Fig. [,
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Fig.1 Basic configuration of fuzzy systems

There arc four principal elements in such a fuzzy system:
fugzifier, fuzzy rule base, fuzzy inference engine, and
defuzzifier.

The fuzzifier performs a mapping from the observed crisp
input space {/ < B" to the fuzey sets defined in U. The
most commonly used fuzzifier is the singleton fuzzifier,
which xel/ into fuzzy set A, in U/ with

fa (o) =landu, (¥ =0foraiix’e U with X#x.

maps

The firzzy rule base consists of a set of linguistic tules in
the form of “IF a set of conditions are satisfied, THEN a
set of consequences are inferred.” Let’s consider the case
where the fuzzy rule base consists of A rules in the
following form:
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R IF x; is Alj and x3 isAi" ---and x, is A,-,f,

THEN zis B/,
ji=L2. . M, x(i=12,...,n1) the
variables to the fuzzy systems, z€ V is the output variable

where are inpui
of the fuzzy system, and Aij and B/ are linguistic terms
by

uA_j(xi)ané Wer(2), respectively. Each rule R4 can be

characterised fuzzy  membership  functions

viewed as a fuzzy implication: A{i XX A,{ — B/, which

is a fuzzy set in U/ %V with

I'LA,’X--rxA’—}B’(x{"“’x;!‘z)
to , n
:;uAf.(xl}®...®uf.‘nj(xﬂ}®p3,(z)
and the most commonly used operations for "®" are

“product” and “min”.

The fuzzy inference engine is decision making logic which
employs fuzzy rules from the fuzzy rule base to determine
a mapping from the fuzzy sets in the input space U 1o the
furzy sets in the output space V. Let A, be an arbitrary

fuzzy set in U; then each rule R /" determines a fuzzy sct

A, o R/ in V based on the following compositional rule:
My ol = ma)&cU[ile(x) ®P~A{x W_,gl(x 2]
2
=maylitg () Bl (4) @ Bpy () By (2)]

The defuzzifier performs a mapping from the fuzzy sets in
V 10 a crisp value in V. The following centriod {centre-

average) defuzzifier, which performs a mapping from the
fuzzy sets A, o R/ inVioa crisp value zeV , is the most

commaonly used method:
M

Y, @D

i=l

e=ty 3)
ZP-A DRJ(ZJ)
=

where 77 is the point in V at which Mg (z) achieves its

maximum value (usually, we assume that L p, (=1

3. FUZZY MODELLING AND FUZZY TRACKING
CONTROLLER DESIGN OF NONLINEAR
SYSTEMS

3.1 Linearization of the system

Consider the following nonlinear dynamic system

1y =f(x,u) 4



where x "—“[X;,X?’,...,XH]T is the state vector, also f(x,u)

is a nonlinear function, and u=[u1,u2,...,um]T is the

control input. The control objective is to force the plant
state vector x to follow a specified desired trajectory, LT
Assuming f(x,u) is differentiable with respect o

x and u respactively, then equation (4) can be linearizeg at
some point (x,,u;} by Taylor's expansion up to the first
order such that

.. af| _  ofl .
X=X, +— X+ G
axy; axl; {5

X, =1(x5,u)
where

KE=my-%, G=u-—g
and u; can be obtained from the following equilibrium
condition (Palim et al., 1997)

;=0
From expression (5), we have the following local
linearized error dynamic equation

;(. = A i ;{d + Bi u (6)
where
Ar :a.f! & RH.)(H,B,‘ - af e RI’(X-‘H (7}
dxj; dul;

Remark 1. If equation (6) is in a controllable form, the
feedback control law

b=~ X (8)
can be designed by using conventional linear system
theory (Ogata, 1990} so that the eigenvalues of
{A; = B;K;) are the specified ones. The feedback gain ¥
can be obtained by using the Ackerman’s formula in the
case of single-input system as follows

K; =[0.....011Q;, oA, o)

where

-1 s SO e

a(s)=s5" + o, s"
is a desired stable polynomial, and

Q; =[B; AB; A7B; .. AT'By

3.2 Fuzzy modelling and controller design

Many Physical systems are very complex in practice so
that a1t s wvery difficelt to obtain their rigorous
mathematical models. In recent years, fuzzy logic has been
applied to the ficld of system modelling and control
engineering (Feng et al.. 1997) by means of combining
human heuristic reasoning and expert experience. In this
paper. the fuzzy model is established by the following
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fuzzy inference rules which include local linearized
subsystems and feedback controllers,

R:  IF xisF AND..x is F!
THEN
X=AX+Bi
i =KX (10)
i=12,....1

where R’ denotes the i-th fuzzy inference rule, [the
number of inference rules, F;: (j=L12,....,n) are fuzzy
sets, X=X ~xy4 is the tracking error of the system with
desired trajectory Xy and U=u~u, .

Let p;(x} be the normalized membership function of the

inferred fuzzy set F " where

F‘:ﬂF} an
=l

and

!
2= (12)
<

By using a standard fuzzy inference method, that is, using
a singleton fuzzifier, product fuzzy inference and centre-
average defuzzifier, the following global tracking error
fuzzy nominal model for the controlled nonlinear system
can be obtained,

}?=A0£+BOU (13)
i =K% (14)
where
i !

Ag=D 1A, Bo= 1B

::l i=l (15)
K=Y uK;

=1

Remark 2: Here, we assume the fuzzy model is globally
controllable, that is, {Ay,By) is a controilable pair.

4. A SIMULATION EXAMPLE

To illustrate the proposed robust tracking control scheme
in this paper, a simulation example is carried out for a one-
link robotic manipulator. The dynamic equation of the cne-
link robotic manipulator is given by

mi*8+ dd + mglcos(8) = u (16)

with



m = lkg - payload.

! =1m - length of the link,

g =981 m/s? - gravitational constant,

d= lkgm2f5 - damping factor,

i - control variable (kgm2 is%).
Assuming we are inferesied in the dynamics of the system
in the range of [-90°,90°}, then the fuzzy nominal model
can he obtained by linearizing the nonlinear equation (16)

over a number of points, such as 0°,#45° 490", The
following fuzzy nominal model has been obtained.

R IF x; is about 0
THEN X = A\X +Bjii
R-: IF ¥ is about - 45°
THEN X = A% +Bail
RYIF xy is about + 45°
THEN X = Aq% + Bl
RYOF Xy is about - 90°
THEN X = A% +Byif
R IF x; is about + 90°
THEN X = AsX + Bgil

where

X =0, X =0,% :[EE,EE]T,M,- = mglcos(8;}
o 1 ¢

A} = N B! =
0 -1 1
Fon i 0

AL = B1 =

To-69%4 1 - 1

[ o 0
515 6 0a —1}‘ BFH
[0 I 0
Al g wajL‘ B“:u
fo _Jo
A 7lowt - l} Bs 'H

The fuzzy sets for x; are chosen as in Fig 2.
J { =)

The desired closed loop poles for each local model are
chosen as [-4, -3} Thus the feedback control gains are
found by using ot pole placement method as follows

K, =[12 6]
=15.1 6l

K,
Ky =[18.9 6].

Ky=[22 6},
Ks=[21.8 6].
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The control objective in this simulation is to force the one-
link robotic manipulator to follow a desired trajectory
which is generated by the following reference model

o PR o P

where 1, is chosen as in Fig3.
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Fig.3 The control input of the reference model

In this example, the initial values of xand x; are selected
as

[{0), 5 (0] ={17.2°,0], {24 (0), 55 (D] ={0.05.

Fig. 4 shows the output tracking using the fuzzy feedback
controtler. It can be seen that the outpul tracking error is
asymptotically converges to zero. Fig. 5 shows the control
input.
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Fig.4 The output tracking of the link
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Fig.5 Fuzzy tracking control input

5. CONCLUSIONS

A fuzzy tracking control scheme is proposed for nonlinear
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systemns in this paper. The main contribution of this
scheme 15 that a system model for a nonlinear system is
established by fuzzy synthesis of a set of linearized local
subsystems, where the conventional linear feedback
control technique is used to design a feedback controller
for the fuzzy system. A simulation example has been given
to support the propesed control scheme.
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